Jurnal / Konferensi2024

Enhanced Intrusion Detection in IoT Smart Homes: Leveraging Binary and Multi-Class Classification Models

Penulis

Zulhipni Reno Saputra Elsi, Deris Stiawan, Bhakti Yudho Suprapto, M. Agus Syamsul Arifin, Mohd. Yazid Idris, Rahmat Budiarto

Dipublikasikan di

International Journal of Online and Biomedical Engineering (iJOE)

Abstrak

This study uses the MQTT-IoT-IDS2020 dataset, which contains normal traffic and attack traffic such as scan_A, scan_sU, Sparta, and mqtt_bruteforce attacks. This dataset is statistically extracted based on the unidirectional-based features packet header flow feature and has 19 features. This study used 10 best algorithms, namely ADABOST, eXtreme gradient boosting classifier (XGBC), stochastic gradient descent classifier (SGDC), random forest (RF), Naïve Bayes (NB), multi-layer perceptron classifier (MLPC), decision tree (DT), logistic regression (LR), linear discriminant analysis (LDA), and K-Nearest Neighbor (KNN) using binary class and multi-class. Using this classification algorithm, researchers measure the value of accuracy, precision, recall, F1 score, classification time, and receiver operating characteristic (ROC) curve to obtain the best classification algorithm. Measurement of accuracy value is done by dividing the dataset into 80:20 for training data and testing data, then validating the measurement of accuracy value with k-fold.

Tim Penulis

1

Zulhipni Reno Saputra Elsi

Universitas Sriwijaya

2

Deris Stiawan

Universitas Sriwijaya

3

Bhakti Yudho Suprapto

Universitas Sriwijaya

4

M. Agus Syamsul Arifin

Universitas Sriwijaya

5

Mohd. Yazid Idris

Universitas Sriwijaya

6

Rahmat Budiarto

Universitas Sriwijaya

Kutip

Zulhipni Reno Saputra Elsi, Deris Stiawan, Bhakti Yudho Suprapto, M. Agus Syamsul Arifin, Mohd. Yazid Idris, Rahmat Budiarto (2024). Enhanced Intrusion Detection in IoT Smart Homes: Leveraging Binary and Multi-Class Classification Models. International Journal of Online and Biomedical Engineering (iJOE).
Logo Unsri

Grup Riset Jaringan Komputer, Keamanan, dan Sistem Terdistribusi. Fakultas Ilmu Komputer, Universitas Sriwijaya.

Kontak

Alamat

Gedung Diploma Komputer, Fakultas Ilmu Komputer, Universitas Sriwijaya, Jl. Srijaya Negara, Bukit Besar, Ilir Barat I, Palembang, Sumatera Selatan, 30128

Afiliasi

Diktisaintek Berdampak
Kemdikbud
Unsri
IEEE
ACM

Pengunjung

Flag Counter

© 2026 COMNETS Research Group. Hak Cipta Dilindungi Undang-Undang.